Unusual outer membrane lipid composition of the gram-negative, lipopolysaccharide-lacking myxobacterium Sorangium cellulosum So ce56.
نویسندگان
چکیده
The gram-negative myxobacterium Sorangium cellulosum So ce56 bears the largest bacterial genome published so far, coding for nearly 10,000 genes. Careful analysis of this genome data revealed that part of the genes coding for the very well conserved biosynthesis of lipopolysaccharides (LPS) are missing in this microbe. Biochemical analysis gave no evidence for the presence of LPS in the membranes of So ce56. By analyzing the lipid composition of its outer membrane sphingolipids were identified as the major lipid class, together with ornithine-containing lipids (OL) and ether lipids. A detailed analysis of these lipids resulted in the identification of more than 50 structural variants within these three classes, which possessed several interesting properties regarding to LPS replacement, mediators in myxobacterial differentiation, as well as potential bioactive properties. The sphingolipids with the basic structure C9-methyl-C(20)-sphingosine possessed as an unusual trait C9-methylation, which is common to fungi but highly uncommon to bacteria. Such sphingolipids have not been found in bacteria before, and they may have a function in myxobacterial development. The OL, also identified in myxobacteria for the first time, contained acyloxyacyl groups, which are also characteristic for LPS and might replace those in certain functions. Finally, the ether lipids may serve as biomarkers in myxobacterial development.
منابع مشابه
Investigation of the central carbon metabolism of Sorangium cellulosum: metabolic network reconstruction and quantification of pathway fluxes.
In the present work, the metabolic network of primary metabolism of the slow-growing myxobacterium Sorangium cellulosum was reconstructed from the annotated genome sequence of the type strain So ce56. During growth on glucose as the carbon source and asparagine as the nitrogen source, So ce56 showed a very low growth rate of 0.23 d-(1), equivalent to a doubling time of 3 days. Based on a comple...
متن کاملThe jerangolids: A family of new antifungal compounds from Sorangium cellulosum (Myxobacteria). Production, physico-chemical and biological properties of jerangolid A.
An antifungal activity was detected in the culture broth of the myxobacterium, Sorangium cellulosum strain So ce 307. The activity was excreted into the supernatant during the log and early stationary phase. When the organism was fermented in the presence of the adsorber resin XAD-16, the metabolite was quantitatively bound to the resin. The main component, jerangolid A, has structural similari...
متن کاملDevelopment of a mariner-based transposon for use in Sorangium cellulosum.
In order to generate marked insertions in the myxobacterium Sorangium cellulosum, a transposon based on the eukaryotic mariner transposon was developed. The transposition frequency was increased with the use of a mutated tnp gene. The transposon randomly inserts into the chromosome, as demonstrated by targeted mutagenesis of the epoK gene.
متن کاملHeterologous production of the antifungal polyketide antibiotic soraphen A of Sorangium cellulosum So ce26 in Streptomyces lividans.
The antifungal polyketide soraphen A is produced by the myxobacterium Sorangium cellulosum So ce26. The slow growth, swarming motility and general intransigence of the strain for genetic manipulations make industrial strain development, large-scale fermentation and combinatorial biosynthetic manipulation of the soraphen producer very challenging. To provide a better host for soraphen A producti...
متن کاملA Sorangium cellulosum (myxobacterium) gene cluster for the biosynthesis of the macrolide antibiotic soraphen A: cloning, characterization, and homology to polyketide synthase genes from actinomycetes.
A 40-kb region of DNA from Sorangium cellulosum So ce26, which contains polyketide synthase (PKS) genes for synthesis of the antifungal macrolide antibiotic soraphen A, was cloned. These genes were detected by homology to Streptomyces violaceoruber genes encoding components of granaticin PKS, thus extending this powerful technique for the identification of bacterial PKS genes, which has so far ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 286 15 شماره
صفحات -
تاریخ انتشار 2011